Gigaset

Provisioning Guide

Gigaset pPro INSPIRING CONVERSATION,

Content

Content
INtrodUCtionuueiiiiiiiiii it ittt teenterennnesennsssennsssnnnens 3
Roles in the ProvisioNiNg PrOCESS ...ttt ittt ettt e et e e e e neeaneanas 4
Serverin the ProViSIONING PrOCESS ...ttt ettt et et e ettt e it a i enaenenns 5
L€ o T 1T Y= Y= 5
e)V Ty o] 1 T Y] =] PPt 5
Provisioning MeEThOds ...ttt e e e e e e e e e 6
(e Co NV T T a1 Te [I- | - 8
Provisioning methodsttt iiiiiiiiiiitteeenennnnneeeesaannns 9
Manual Gigaset VoIP phone set-up — standard procedureccoviiviiiiiiiiinnininnennnn. 9
Methods for providing the provisioning server URLot 10
Setting up redirection information using the web userinterface 10
Setting up redirection information using the XML-RPCinterfacecoovint 13
Providing the provisioning server URL via the SIP multicast mechanism...................... 22
DHCP option (dhCp_Url) . oo e e e e et et e e 23
MAC based ProVISIONING ...ttt e e et et e e et e e e 23
Y 2TF- Vo T 1 o Y 25
S = [T P 26
Auto-provisioning via activation CoOAe ...ttt i e 27
MESSagE flOW ..ottt e e 29
I S =0 T 13 30
R ol U Y=] 1= ot £ 31
Updating the configuration data ..ot i e et 32
The XML provisioning filec.oiitiiiiiiiiiiiiiiiiiiiiiiiiieinneeenanenannness 33
Setting Up an OWN ProvViSiONING SEIVErvvitiiiiiiiittererereeeessssssssnnnnns 38
Installing the auto-provisioning applicationt et 38
Preparing the file system i e et 38
Required [rariesonniii i e e e e e e et e e 39
Installing the gigaset_profile_gen applicationcoiiiiiiiiii it 39
Setting the access rights for the auto-provisioning filesand scriptooiiail 40
AULtO-ProVvisioning eXamPle SCrPt .. ou ittt i e e e e e e 41
Testing the installation i e e e et e et e 47
The gigaset_profile_gen applicationooiiiiiiii i e 48
o LRy V] =T g T A Lot U 49
4T 1= P 51

Introduction

Introduction

Gigaset VolP phones are delivered to the end-user requiring minimal user interaction for set-up and
keeping up-to-date. The end-user experiences the same “plug & play” behaviour as for analogue

phones. Unlike classic phones using a PSTN connection, VolIP phones require a variety of configura-
tion parameters which have to be loaded automatically when the device is connected to the Internet.

Provisioning

Provisioning is the process for uploading the necessary configuration and account data to the phone.
This is done by means of profiles. A profile is a configuration file that contains Gigaset VolP phone-
specific settings, VolP provider data as well as user-specific content. It has to be available on an HTTP
provisioning server which is accessible for the phone in the public (Internet) or local network.

A profile is loaded to the phone via its Ethernet interface.

Auto-provisioning

Auto-provisioning is defined as the mode of operation by which the Gigaset VolP phone connects
automatically to a server and downloads both provider-specific parameters (such as the URL of the
SIP server) and user-specific parameters (such as the user name and password) and stores them in its
non-volatile memory.

Auto-provisioning is not necessarily limited to the parameters required for doing VolP telephony.
Auto-provisioning can also be used to configure other parameters, e.g. the eMail settings, if the
Gigaset VolP phones support these features. However, for technical reasons auto-provisioning is not
possible for all of the configuration parameters of the phone. As a general rule, all parameters having
to do with IP services can be modified by auto-provisioning.

XML-provisioning

Gigaset offers XML-provisioning to the customer, i.e. Gigaset VoIP phones can be supplied with the

necessary configuration data via XML content. Existing XML-tooling can be used. At present, the XML
file containing the configuration data is used by a profile generation tool to generate a binary file that
is supported by the phones. In future, Gigaset VolP phones will accept XML files directly.

The following Gigaset VoIP phones are supported for auto-provisioning:

XML-provisioning with Plain XML-provisioning
binary
Gigaset DE90O IP PRO Yes Planned Q2 2012
Gigaset DE700 IP PRO Yes Planned Q2 2012
Gigaset DE410 IP PRO Yes Planned Q2 2012
Gigaset DE310 IP PRO Yes Planned Q2 2012
Gigaset DX800A all in one Yes -
Gigaset C610 IP/N300 IP Yes Planned Q2 2012
Gigaset N510 IP PRO Yes Planned Q2 2012
Gigaset N720 DECT IP Multicell System Yes Planned 2012

Introduction

Roles in the provisioning process

Gigaset Provisioner Provider
3 5
Update Redirection Provisioning
-
server server server
End-user

Network /
Internet

Roles in the provisioning process

Gigaset Communications GmbH - the manufacturer

*

Gigaset is the manufacturer of the VoIP phones which are the subject of this document. For
Gigaset VoIP phones the MAC address including a check sum is used for identification. Gigaset
ensures that this MAC ID is printed on all phone boxes. This is necessary for assigning a specific
phone to a specific provider in order to provide the phone with SIP account data.

Each device is preconfigured with the same parameters. By default, all Gigaset VolP phones con-
tact the Gigaset update server when they are connected to the Internet for the first time to get
further information, e.g. the URL of the responsible provisioning server.

Gigaset provides a web or XML-RPC interface which can be used by provisioners to deploy redi-
rection data on the Gigaset redirection server.

The provider

L 4

The provider hosts the SIP servers required to offer a complete VolIP telephony service to the end-
user. Occasionally, the provider simultaneously assumes the role of provisioner and can host his
own provisioning server.

The provisioner

*

*

The provisioner has direct contact to the end-user and actually manages the VolP configuration
parameters for each individual end-user VolP phone. The provisioner has to provide the content
and perhaps even to operate the server that will be accessed by the phone in order to download
the end-user’s configuration parameters.

When using the Gigaset redirection service the provisioner can operate an own provisioning
server. If not, the provisioner is responsible for creating redirection data on the Gigaset server. The
MAC ID printed on the device’s box can be read by a barcode scanner by the provisioner who has
to deploy this information on the Gigaset redirection database using the web interface.

The provisioner is also responsible for storing the custom-built data on the provisioning server. If
a VolIP phone requests this server, an end-user specific profile is generated and sent to the device.

Last but not least, the provisioner has to keep the custom-built data up-to-date.

The end-user

The end-user has to connect the VolP phone to the Internet only. All related information will be
downloaded automatically and there is no need for the end-user to configure parameters manually.

Introduction

Server in the provisioning process

Gigaset server

*

Update server

The update server is responsible for providing the Gigaset VolP phones with
- provider profiles (user-independent data),

- firmware updates,

- language files for the Web user interface (optional),

- help texts (language-specific) for the Web user interface (optional).

Gigaset VolP phones establish a connection to the Gigaset server when connected to the Internet
for the first time and then periodically in order to check if there is an updated configuration file for
the Gigaset VolP phone-specific settings.

By default the Gigaset server profile.gigaset.net/device is used as update server.

Redirection server

When the VolP phone contacts the Gigaset server, in order to get all the necessary configuration
data, the redirection server supplies the URL of the provisioning server which is responsible for
providing the VolP phone with the provider data (SIP account).

To enable auto-provisioning (i.e. the end-user does not need to select the provider manually) the
provisioner must add the redirection information for the VolP phones to the redirection database.

Provisioning server

The provisioning server stores custom-built data for providing the VolP phones with the VolP specific
data (e.g. SIP account).

For many reasons it is possible to use a customised provisioning sever, e.g.:

*

*

*
*

The phone has no possibility to reach the Gigaset server via the web (e.g. closed network without
HTTP proxy).

The phone is used behind a VolP PBX and the provisioning has to be independent from the LAN/
WAN infrastructure.

The provider wants to handle profiles and firmware himself.
The provider wants to use an auto-provisioning procedure to support the VolP phones.

The Gigaset auto-provisioning methods are scalable over a wide area. This means - for example -
that it is possible to set up a system completely independent from the Gigaset server or to use the
Gigaset server for redirecting to a provider-specific provisioning server.

Setting up a customised provisioning server
The following is required to set up an own provisioning server:

*

HTTP server (e.g. Apache)

The provisioner has to provide a Linux system with an operative HTTP server, where the specific
Gigaset software package can be installed.

Provisioning package provided by Gigaset

Gigaset provides the customer with a provisioning software package. The packageincludes all the
necessary files, scripts, tools and the manual for setting up a provisioning server. The provisioner
only has to create a connection between the provisioning script and its database containing the
user-specific account data. For detailed information please refer to the chapter

(+).
Database (e.g. MySQL)

The use of a database is optional but it is the usual way for providing custom-built data. Further-
more, the use of a database administration tool (e.g. phpMyAdmin) is helpful to manage the data-
base content.

Introduction

Provisioning methods

For implementing auto-provisioning of the VolP phones it must first be ensured that the device
receives the address (URL) of the server responsible for provisioning (-+). As the provisioning
server location cannot be anticipated - in the case of a private PBX it may be located within the
phone’s local network, in the case of a hosted PBX it may be located somewhere in the Internet - the
phones use a Gigaset server (profile.gigaset.net/device) by default which must be changed according
to the provisioner’s requirements.

The following methods are provided for the provisioning server URL update, depending on the pre-
vailing network infrastructure:
¢ Gigaset redirecton service (+)

The provisioner can use either the Gigaset provider/provisioner portal to enter the provisioning
server URL for the phones to be managed or use the XML-RPC interface.

¢ SIP multicast mechanism (»)

The phone requests the provisioning server address from a local network instance via SIP multi-
cast. This method is predominantly used by local PBX systems.

¢ DHCP option 114 (»)

The phone requests the provisioning server address via a DHCP request with option 114
(dhcp_url). This method is predominantly used by stand-alone provisioning servers within the
same LAN.

¢ Manually using the device’s Web Ul

The following methods are provided for auto-provisioning:
¢ Mac-based auto-provisioning (+)

The VolIP phone requests the provisioning data from the provisioning server based on its MAC
address. No user input is necessary. This method is used for VolP phones connected to (hosted)
PBX systems.

& Auto-provisioning based on an activation code (»)

The VolIP phone requests the provisioning data from the provisioning server based on an activa-
tion code manually entered by the user. This method is used for devices distributed via retail sales.

Profile download can only be started from the VolP phone, i.e. that the phone must be triggered to
perform an update when new configuration data is provided. This can be carried out as follows:

¢ VolIP phone restart

& Manually by the user via the device's Web Ul

& Regular version checks initiated daily by the phone
o SIP check-sync mechanism (+)

Connect redirection server

SIP multicast
\=——S DHCP option 114
Enter I_> I

redirection
data

!

Supply provisioning URL

MAC adress or activation code

>

Provisioning

Introduction

@

server DECT
SIP account and configuration data
>
The following methods are supported by the specific devices:

MAC-based auto- | Auto-provisioning SIP multicast DHCP option

provisioning with activation code | and check-sync | 114
Gigaset DE90O0 IP PRO Yes - Yes Yes
Gigaset DE700 IP PRO Yes - Yes Yes
Gigaset DE410 IP PRO Yes - Yes Yes
Gigaset DE310 IP PRO Yes - Yes Yes
Gigaset DX800A all in one | Yes Yes Planned 2012 Yes
Gigaset C610 IP/N300 IP Yes Yes Yes Yes
Gigaset N510 IP PRO Yes Yes Yes Yes
Gigaset N720 DECT IP Yes Yes Yes Yes
Multicell System

Introduction

Provisioning data

The following are provisioning data:

Parameters

Gigaset VolP phones have many configuration parameters but only a small subset is required for pro-
visioning.

¢ General device data
This data is supplied statically via a template and comprises

general settings for the SIP account, e.g. proxy, registration and STUN server address, port
numbers, etc.

NTP settings, e.g. a time server address
settings for Info services

¢ User-specific data
It can be extracted from the provisioning database (+) and comprises, for example

SIP username and password

LAN settings

voice mail settings, e.g mail account data

settings for network directories, e.g. online phonebooks

WebUI texts (optional)

For Gigaset DECT IP phones (e.g. Gigaset N510 IP PRO) only the English language is implemented by
default in the firmware. All other languages have to be downloaded from the provisioning server
when selected by the user.

Firmware update files (optional)

The provisioner can decide to also host the firmware files on the provisioning server. Gigaset delivers
a package with all the current firmware files for the VolP phones.

Provisioning methods

Provisioning methods

When the phone is connected to the network for the first time, it needs to connect to a server in the
local or public network in order to download the necessary data to be able to make VolIP calls. By
default, this is a Gigaset server but it could also be a customer provisioning server, e.g. on a PBX.

Below, the standard manual procedure is described in short.

The following methods are available for automatic provisioning (see also introduction on):
& For providing the provisioning server URL

- Gigaset redirecton service (+)

- SIP multicast mechanism (+)

— DHCP option 114 (»)
¢ For auto-provisioning

- Mac-based auto-provisioning (+)

- Auto-provisioning based on an activation code (»)

& For profile update
— SIP check-sync mechanism (+)

Manual Gigaset VolP phone set-up - standard procedure

A Gigaset VolP phone can be set up manually via the phone’s user interface - in the case of a DECT
VolIP phone via the handset. The use of a PC is not required but possible using a Web user interface
which is available for all Gigaset VolP phones.

The default manual registration procedure for a Gigaset VolP phone is as follows:

conn IP Assistant IP Assistant Select your Country

Austria

Start IP Doyou have a code Australia

Installation for Auto Belgium
wizard? Configuration? Denmark|

Yes Back

Select your Provider IP Assistant IP Assistant

Nikote
Qsc
Sipgate
sipSNP

provider

Back

Standard manaul registration procedure

The end-user connects the phone to the network [ll. Internet access is required.
The connection assistant is started [F3.
If available the activation code supplied by the provider is entered [EJ (»).

If the phone establishes a connection to the Gigaset server to download a provider profile, this

download is carried out in two steps:

- All countries for which a provider profile is available are listed for the user to select the location

- All providers of the selected country for which a profile is available are displayed for the user
to select the provider &

* ¢ o o

Provisioning methods

& The profile is loaded from the Gigaset server onto the VoIP phone. In this case Gigaset acts as a
provisioner for general (user-independent) SIP settings.

* The user enters the authentication name [l and the password il according to the rules given by
the provider profile.

Methods for providing the provisioning server URL

Setting up redirection information using the web user interface
To add the redirection data to the redirection database, Gigaset provides a web user interface for pro-
visioners.

You need a user account (user name and password) which has to be provided by Gigaset Communi-
cations GmbH.

There is also an XML-RPC interface available to provide redirection data. The XML-RPC
calls are described in detail + Page 13.

~,

» Open the web user interface:

http://prov.gigaset.net English hd
» Login using the user name and password provided by Gigaset.
If the login is successful, the main menu is opened.

The following functions are available:

¢ Registration, control and deregistration of single devices
¢ Display of devices list sessseee

¢ Upload of prepared XML files

Registering VoIP phones

» Toregister a Gigaset VolP phone, enter the MAC ID of the device,
the URL of the provisioning server and the Provider for the
device configuration.

Hello gigaset » Logout

Deregister List Devices Upload

Register a =single redirection data set to the Gigaset redirection database. MAC
address, provisioning url and the provider's name are required!

MAC-D: |

URL: | |
Provider: | | Register |

URL and Provider can be entered manually or selected from a list of known provisioner URLs and pro-
viders.

» Click on the Register button to save the entry.

The corresponding parameters are checked and - if approved - saved in the Gigaset redirection data-
base. The provisioner is informed accordingly.

10

http://prov.gigaset.net

Provisioning methods

Searching for and deregistering VolP phones

The Deregister tab can be used to query single redirection data records using the MAC ID or MAC
address.

» To search for a specific redirection data set, open the Deregister tab, enter the MAC ID or MAC
address of the device and click on the Search button.

MAC-ID- I Search |

MAC address: TC2FB0MEFE28
Provider's name: Provider
Provisioning URL: | http:/11592.168.2.161:82/gigaset/coi'ap?mac="MACD

Last request: 2011-05-11
Deregister |

If the MAC ID or MAC address matches, the redirection data for a specific device appears.
» To deregister the redirection data record for the device click on the Deregister button.
You need to confirm this action. It is therefore not possible to delete entries accidentally.

List devices

The List Devices tab can be used to search for redirection data sets of all devices or all devices of a
specific provider.

» Open the List Devices tab

» Click on the List button to list the redirection data sets of all devices.

or

» Enter the name of a provider or select it from the list and click on the Search button.

Provider: | ZI List |

MAC address: Provider's name: Provisioning URL: Last
request:
TC2FB015F%26 Provider http:/M582.168.2.161.82/gigaset/c 2011-05-11
TC2FBO1SFAF3 Provider http:/M582.168.137.106/gigaset/ci 2011-08-10
TC2ZFBO1D1121 |Provider http:/M92. 168.178.51/chagalld42/ 2011-12-14
TC2FB0207541 |Provider hitp:/i192 188.178 51/gigaset/521 2011-11-29

The list shows all devices that have ever been uploaded by the provisioner (possibly dependent on
the provider name).

11

Provisioning methods

Uploading an XML File

Itis also possible to upload an XML file containing many redirection data bundles. This option is most
useful for provisioners whose end-user profiles are generated automatically by any script and who
want to keep using the web user interface instead of direct interfaces for clients. However, more than
just uploading redirection data can be carried out. Depending on the structure of the XML file, any
function provided by the interfaces may be possible. For detailed information on the XML parameter
values please refer to the section

(»

).

» Open the Upload tab, browse your file system for the appropriate XML file and click on the Upload

button.

Hello gigaset

Register Deregister List Devices

Uploading an XML file, containing XML-RPC functions.

File: |\Desktop\provider.xm| Browse_l Upload |

L 1Y

There is also another interface which allows the upload of XML files without using the
web user interface.

Commons FileUpload is used (http://commons.apache.org) at the server end.

An HTTP client is necessary at the client end.

Principally, this process is similar to the remote procedure calls described in section

(+). The
difference between the versions is that on the one hand XML-RPC clients request remote
methods and transfer parameters in order to create an XML file, while on the other hand
HTTP clients upload an XML file directly. The latter method - like the XML file upload via
the web user interface - is suitable for users whose XML files are created through scripts
but who do not want to use the web user interface. Please refer to paragraph
(+) for further details regarding the structure of XML files.

File upload

The HTTP XML file upload can be accessed using the following address:
https://prov.gigaset.net/apxml/basic.do

Content type for XML FileUpload

The default content type used in most cases is
application/x-www-form-urlencoded

But if a provisioner wants to upload an XML file either via the web user interface or via an
HTTP client it would be very inefficient to use the default content type.

For this reason, XML files are uploaded with the content type

multipart/form-data

which is suitable for sending large data. Commons FileUpload corresponds exactly to this
format.

12

http://commons.apache.org

Provisioning methods

Setting up redirection information using the XML-RPC interface

The most comfortable Gigaset server interface is the XML-RPC interface. XML-RPC is subject to a pro-
cedure call protocol, which means that functions can be accessed at different places. XML-RPC
requests are encoded in XML syntax and dispatched via HTTP.

The Gigaset XML-RPC web interface is based on Apache XML-RPC libraries and can be accessed by
any XML-RPC client. The client can call different remote procedure methods. The parameter values
and the function names are converted into XML syntax simultaneously and transferred to the XML-
RPC server via HTTP. The XML file is parsed through the Apache XML-RPC libraries and again, the suit-
able remote method with its corresponding parameter values is called. The response of this remote
method is again converted into XML syntax, sent back to the client and processed by the XML-RPC
client libraries.

The XML-RPC service can be accessed using the following address:
http://prov.gigaset.net/apxml/rpc.do
An XML-RPC call for an XML-RPC client could be as follows:

Object[] params = new Object[]{"#MAC-ID#", "#PROVISIONING URL#",
"#PROVIDERNAME#" } ;

List<Object> listl = Arrays.asList ((Object[])client.execute
("autoprov.registerDevice", params));

On the Gigaset XML-RPC web interface the implementation appears as follows:

public List<Object> registerDevice (String macID, String url, String name) {
use parameter values and create response list

return myList;

}

The XML files are invisible on both sides, when effecting the remote procedure call on the client as
well as on the server because the XML files are parsed via the XML-RPC libraries. Nevertheless, the
plain text (method + parameter) has to be transferred via HTTP in a well- structured manner which
makes XML a perfect alternative.

13

http://prov.gigaset.net/apxml/rpc.do

Provisioning methods

XML syntax

Whenever an XML-RPC client requests a remote method on the Gigaset XML-RPC server, an XML file
is created consisting of the method’s name and the parameters. Both the file and the response are
transferred via HTTP. The upload of XML files via FileUpload has to look exactly like this as well.

The uploaded XML file, depending on the method for registering a redirection data set, can for exam-
ple appear as follows:

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>
<methodName>autoprov.registerDevice</methodName>
<params>
<param>
<value>FFFFFFFFFFFF-1234</value>
</param>
<param>
<value>http://my.provisioning.server.com/gigaset/ap.php</value>
</param>
<param>
<value>MyProvider</value>
</param>
</params>
</methodCall>

After a successful request, the corresponding XML response file looks as follows :

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse xmins:ex="http://ws.apache.org/xmirpc/namespaces/extensions">
<params>
<param>
<value><array><data>
<value><boolean>0</boolean></value>
<value>mac_already_in_use:FFFFFFFFFFFF</value>
</data></array></value>
</param>
</params>
</methodResponse>

14

Provisioning methods

XML-RPC Commands

If an XML-RPC client calls a remote procedure function on the Gigaset XML-RPC server, an XML file
consisting of the XML-RPC method and the corresponding parameter values is created and is trans-
ferred via HTTP. The response is transferred the same way.

The respective XML-RPC methods as well as the relevant parameter values, return values and XML for-
mats are illustrated below:

autoprov.registerDevice
Registering a device at the provisioning server:

Call: autoprov.registerDevice (String macID, String url, String name)
macID MAC ID of the device
url URL of the provisioning server
name Provider name
Return: Return value (1) (Boolean) 1|0 1 =true, 0 =false
Return value (2) (String) if true: OK:password
iffalse: mac _already in use:
mac_invalid:
url invalid:
name_ invalid:
Request: <?xml version="1.0" encoding="UTF-8"?>
<methodCall>
<methodName>autoprov.registerDevice</methodName>
<params>
<param>
<value>FFFFFFFFFFFF-1234</value>
</param>
<param>
<value>https://my.provisioning.server.com/gigaset/ap.php</value>
</param>
<param>
<value>MyProvider</value>
</param>
</params>
</methodCall>
Response: <7?xml version="1.0" encoding="UTF-8"?>

<methodResponse xmins:ex="http://ws.apache.org/xmirpc/namespaces/extensions">
<params>
<param>
<value><array><data>
<value><boolean>0</boolean></value>
<value>mac_already_in_use:FFFFFFFFFFFF</value>
</data></array></value>
</param>
</params>
</methodResponse>

15

Provisioning methods

autoprov.deregisterDevice
Deregistering a device from the provisioning server.

Call: autoprov.deregisterDevice (String mac)
mac MAC ID or MAC address of the device
Return: Return value (1) (Boolean) 1|0 1 =true, 0 =false

Return value (2) (String) if true: OK
if false: mac not found:

mac_invalid:

Request: <?xml version="1.0" encoding="UTF-8"?>
<methodCall>
<methodName>autoprov.deregisterDevice</methodName>
<params>
<param>
<value>FFFFFFFFFFFF</value>
</param>
</params>
</methodCall>

Response: <?xml version="1.0" encoding="UTF-8"?>
<methodResponse xmins:ex="http://ws.apache.org/xmirpc/namespaces/extensions">
<params>
<param>
<value><array><data>
<value><boolean>1</boolean></value>
<value>OK</value>
</data></array></value>
</param>
</params>
</methodResponse>

16

Provisioning methods

autoprov.listDevices - list devices for all providers
Supply MAC address, provider name, provisioning server URL and registration date for all registered

devices:
Call: autoprov.listDevices ()
Return: Return value (0-n)
(Object([])
[MAC, NAME, URL, DATE]
Request: <?xml version="1.0" encoding="UTF-8"?>
<methodCall>
<methodName>autoprov.listDevices</methodName>
<params />
</methodCall>
Response: <?xml version="1.0" encoding="UTF-8"?>

<methodResponse xmins:ex="http://ws.apache.org/xmlrpc/namespaces/extensions">
<params>
<param>
<value><array><data>
<value><array><data>
<value>BBBBBBBBBBBB</value>
<value>MyProvider1</value>
<value>https://my.provisioning.server.com/gigaset/ap.php</value>
<value>2009-11-29</value>
</data></array></value>
<value><array><data>
<value>EEEEEEEEEEEE</value>
<value>MyProvider2</value>
<value>https://my.provisioning.server.com/gigaset/ap.php</value>
<value>2009-11-27</value>
</data></array></value>
</data></array></value>
</param>
</params>
</methodResponse>

17

Provisioning methods

autoprov.listDevices - list devices of a specific provider

Supply MAC address, provider name, provisioning server URL and registration date for all registered
devices of a given provider:

Call: autoprov.listDevices (String name)
name Provider name
Return: Return value (0-n)
(Object([])
[MAC, NAME, URL, DATE]
Request: <?xml version="1.0" encoding="UTF-8"7>
<methodCall>
<methodName>autoprov.listDevices</methodName>
<params />
</methodCall>
Response: <?xml version="1.0" encoding="UTF-8"?>

<methodResponse xmins:ex="http://ws.apache.org/xmlirpc/namespaces/extensions">
<params>
<param>
<value><array><data>
<value><array><data>
<value>BBBBBBBBBBBB</value>
<value>MyProvider1</value>
<value>https://my.provisioning.server.com/gigaset/ap.php</value>
<value>2009-11-29</value>
</data></array></value>
</data></array></value>
</param>
</params>
</methodResponse>

18

Provisioning methods

autoprov.checkDevice
Supply provider name, provisioning server URL and registration date for a specific device:

Call: autoprov.checkDevice (String mac)
mac MAC ID or MAC address of the device
Return: Return value (1) (Boolean) 1|0 1 =true, 0 =false
Return value (2) (String) if true: [MAC]
if false: max not found:
mac_invalid:
Return value (3) (String) if true: [NAME]
Return value (4) (String) if true: [URL]
Return value (5) (String) if true: [DATE]
Request: <?xml version="1.0" encoding="UTF-8"?>
<methodCall>
<methodName>autoprov.checkDevice</methodName>
<params>
<param>
<value>BBBBBBBBBBBB</value>
</param>
</params>
</methodCall>
Response: <?xml version="1.0" encoding="UTF-8"?>

<methodResponse xmins:ex="http://ws.apache.org/xmlirpc/namespaces/extensions">
<params>
<param>
<value><array><data>
<value><boolean>1</boolean></value>
<value>BBBBBBBBBBBB</value>
<value>MyProvider1</value>
<value>https://my.provisioning.server.com/gigaset/ap.php</value>
<value>2009-11-29</value>
</data></array></value>
</param>
</params>
</methodResponse>

19

Provisioning methods

autoprov.registerDeviceList
Supply provider name, provisioning server URL and registration date for a list of registered devices:

Call: autoprov.registerDeviceList (List<String> macList,
String url, String name)
macList List of MAC IDs
url URL of the provisioning server
name Provider name
Return: Return value (1) (Boolean) 1|0 1 =true, 0 =false

Return value (2-n) (String) if true: OK: Passwort
mac_already in use:
mac_not exist:

if false: mac invalid:
url invalid:
name invalid:

Request: <?xml version="1.0" encoding="UTF-8"?>
<methodCall>
<methodName>autoprov.registerDeviceList</methodName>
<params>
<param>
<value><array><data>
<value>111111111111-ABCD</value>
<value>222222222222-BCDE</value>
<value>333333333333-CDEF</value>
<value>444444444444-DEFA</value>
</data></array></value>
</param>
<param>
<value>https://my.provisioning.server.com/gigaset/ap.php</value>
</param>
<param>
<value>MyProvider</value>
</param>
</params>
</methodCall>

Response: <?xml version="1.0" encoding="UTF-8"?>
<methodResponse xmins:ex="http://ws.apache.org/xmlirpc/namespaces/extensions">
<params>
<param>
<value><array><data>
<value><boolean>1</boolean></value>
<value>OK</value>
</data></array></value>
</param>
</params>
</methodResponse>

20

Provisioning methods

Another
Response:

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse xmins:ex="http://ws.apache.org/xmlirpc/namespaces/extensions">
<params>
<param>
<value><array><data>
<value>mac_already_in_use:111111111111</value>
<value>mac_already_in_use:333333333333</value>
</data></array></value>
</param>
</params>
</methodResponse>

autoprov.deregisterDeviceList
Deregister a list of registered devices:

Call:

autoprov.deregisterDevicelist (List<String> macList)

macList List of MAC IDs or MAC addresses

Return:

Return value (1) (Boolean) 1|0 1 =true, 0 =false

Return value (2-n) (String) if true: OK
mac_not found:
if false: mac invalid:

Request:

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>
<methodName>autoprov.deregisterDeviceList</methodName>
<params>
<param>
<value><array><data>
<value>111111111111</value>
<value>222222222222</value>
<value>333333333333</value>
<value>444444444444</value>
</data></array></value>
</param>
</params>
</methodCall>

Response:

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse xmins:ex="http://ws.apache.org/xmlirpc/namespaces/extensions">
<params>
<param>
<value><array><data>
<value><boolean>1</boolean></value>
<value>OK</value>
</data></array></value>
</param>
</params>
</methodResponse>

21

Provisioning methods

Another
Response:

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse xmins:ex="http://ws.apache.org/xmlirpc/namespaces/extensions">
<params>
<param>
<value><array><data>
<value>mac_not_found:111111111111</value>
<value>mac_not_found:333333333333</value>
</data></array></value>
</param>
</params>
</methodResponse>

Providing the provisioning server URL via the SIP multicast mechanism

This mechanism is an easy method for loading the URL of the provisioning server, on which the con-
figuration files (profiles) and/or the firmware files of the different Gigaset VolP phones are located.
The mechanism is designed for VoIP PBXs offering an own provisioning server for the connected VolP

phones.

Before an answer is sent to the initiator of the SIP multicast, the PBX (or SoftSwitch) has to identify the
phone type. This is done via the SIP User-Agent header which starts with the product name.

The following example flow chart shows the principle of this mechanism:

Gigaset VolP phone Router/Network Switch

PBX
(Provisioning Server)

SIP Multicast to IP: 224.0.1.75 =% Request e.g.: SUBSCRIBE sip:MAC%3A7C2F800DB4DF@local >

(user agent header e.g.: C610 1P/42.021.00.000.000) |

|
SIP NOTIFY e.g.:192.168.178.53:5060"http://profile.gigaset.net/device/provisioning"

The SIP multicast mechanism is supported by most of the Gigaset VolP phones and by the Gigaset
T300 PRO and Gigaset T500 PRO PBX as well (it is also supported by some products from other com-

panies).

22

Provisioning methods

DHCP option (dhcp_url)

As an alternative option for assigning the provisioning server URL to the VolP phones, the DHCP
option 114 (dhcp_url) can be used.

The following example flow chart shows the principle of this mechanism:

PBX

Gigaset VolP phone Router/Network Switch
(Provisioning Server)

DHCP request containing the list with supported options (.., 114)

.
|
DHCP ACK,.... Option:(114) URL ="http://provisioningserver/gigaset”
- |
..start provisioning procedure: GET http://provisioningserver/gigaset/42/2/master.bin”

MAC based provisioning

User-specific profiles are loaded without any user interaction. The database containing the user-spe-
cific data can be hosted on a provider/PBX related server. When the phone contacts the provisioning
server, it identifies itself by means of its own MAC address. Each phone has a globally unique MAC
address that was assigned to it in the factory.

This method has the advantage that, ideally, the end-user does not even have to be aware of the need
for provisioning: he simply plugs in the phone, and the rest happens automatically in the back-
ground.

For this to be successful, the provisioner has to create the association between the MAC address and
the end-user prior to delivering the phone to the end-user. This is done efficiently if the MAC ID (con-
taining MAC address and a 4-digit part of a unique password) is printed on the phone’s box as bar-
code, so that the provisioner can scan the address, assign this with the provisioner's URL on the
Gigaset server (optional) and enter it in its database.

Because the phone periodically queries for configuration updates (every 24h), this method gives the
provisioner the means to effectively control the end-user’s phone configuration.

23

Provisioning methods

Gigaset Provisioner

> MAC address @—e@ # | User Name Password

Provisioning
Server

End-user
=]

1
H et

Redirection
Server

Update
Server

MAC address

Auto-provisioning via MAC address

Principle of operation — MAC-based provisioning with redirection
Kl Gigaset prints the MAC address barcode on the housing and the box.
A The provisioner scans the MAC address and associates it with the user data, e.g. the SIP account.

The MAC ID consists of the MAC address plus a random ID (4 characters) that is added to the MAC
address and has the following syntax:

<MAC-address>-<ID>, e.g.001122334455-ABCD

[EJ The provisioner enters the redirection data on the Gigaset server. The device’s MAC ID and the URL
of the provisioning server have to be provided.

Gigaset therefore provides a web interface as well as an XML-RPC interface. Redirection data
describes a connection between the MAC address, the provisioning server’s URL and the pro-
vider’s name. This configuration bundle is created by the provisioner and has to be stored on the
Gigaset redirection database.

I The end-user connects the phone to the network and the phone contacts the Gigaset server.

[} The Gigaset server checks the MAC ID. If the MAC ID is available in the Gigaset provisioning data-
base of the redirection server it transfers the provisioning server address for this device to the
phone.

3 The phone connects to the provisioning server providing its MAC address.

The provisioning server uploads the custom-built data to the phone. The provisioner is responsi-
ble for creating the custom-built data to store this information on the provisioning server and to
keep it up-to-date.

E] The phone is now ready to initiate the first call.

] Periodically, the phone connects to the provisioning server in order to check if there is new cus-
tom-built data available (once a day).

24

Provisioning methods

Message flow

The following diagram shows - in a simplified manner — the message flow between a Gigaset VolP
phone and the involved servers from the auto-provisioning point of view.

aaaaa

Gigaset Update Gigaset Redirect.
Server Server

Provisioning
Server

http get profile.gigaset.net/device/42/2/master.bin

Upload content

A

Exchange of server index files

http get profile.gigaset.net/device/42/2/../../sifs/siu_1 ZL.bin
<

Binary containing a link to the gigset.net server:
4https://213.203.227.194/macredirect/ap?mac=%MAC(

https get https://213.203.227.194/macredirect/ap?mac=01:23:45:67:89:01

>
error 401 Authorisation required
https get https://213.203.227.194/macredirect/ap?mac=01:23:45:67:89:01

,Authorisation: Digest, username=012345678901, algorithm=MD?5,

nonce based on device specific password
g

307, temporary redirect to http get https://provider_xyz.com/gigaset/cgi/ap?mac=01:23:45:67:89:01

dl 1]

)l

https get provider_xyz.com/gigasethgi/ap?mac:01 :23:45:67:89:01

g
_ error 401 Authorisation required
o
https get provider_xyz.com/gigaset/cgi/ap?mac=01:23:45:67:89:01, Authorisation: Digest,
username=012345678901, algorithm=MD5, nonce based on device specific password
>
AES 128 encrypted profile with account / customer settings
d
o

The message flow illustrates the steps [to il of the image on
Communication takes place by means of HTTP requests.

Profiles are stored in a binary format on the provisioning server depending on the device variant. The
Gigaset server uses the phone’s variant ID to upload the matching configuration. For example, http://
profile.gigaset.net/device/42/2/master.bin refers to the configuration files of a Gigaset N510 IP PRO phone
(+).

The Gigaset redirection server uses the phone’s MAC ID to search for the responsible provisioning
server for this phone.

25

Provisioning methods

HTTP request

When the phone contacts the provisioning server in order to download the auto-provisioning file, it
performs an HTTP: : GET for a URL with the following format:

http://<server domain>/<directory>/<ap>?mac=<mac address>

<server domain> DNS name (or IP address) of the provisioning server.
<directory> Path to the auto-provisioning script within the server domain.
The script is a CGl application, i.e. it runs inside the HTTP server (+).

It constructs a personalised XML configuration file for the requesting phone,
then calls an application which creates the binary configuration file

(gigaset_profile_gen, +),and finally returns the configuration data to
the phone.

<ap> Name of the auto-provisioning script: ap (auto-provision).

<mac address> MAC address of the VoIP phone generating the request, in the 6 hex digit-pair

textual representation, with or without a colon between each digit pair; for
example: 06:55:AF:3A:05:AA or 0655AF3A05AA

Example of a request:
http://my.server.domain.com/gigaset/cgi/ap?mac=06:55:AF:3A:05:AA

URI format

The URL where the ap script is performed is determined by an additional query to get a so- called URI
format string. The server for this query is the same server which is used for firmware updates (nor-
mally - not necessarily, but recommended - the Gigaset server). The query is done with a 3-digit pro-
visioner code. This code is preprogrammed in the factory and is used by the phone to get the file with
the format string. This format string is also used by the phone to build the command to get the profile
from the provisioner’s server. The format string contains fixed text (used for the query as it is) and for-
mat specifier (with a leading %) which will be replaced by the phone. The relevant configuration pos-
sibilities of the URI-format string are the following:

Format specifiers:

$DVID Device ID, composed by build variant and provisioning ID. Example: 42/2
$MACC MAC with colons. Example: .00:01:E3:12:34:56.

$MACD MAC without colons. Example: .0001E3123456.

% To represent the percent character.

o° o\

Example:
The URI-format string:
http://my.server.domain.com /$DVID/cgi/ap?mac=%MACC
Leads to a request with the command:
GET http://my.server.domain.com/42/2/cgi/ap?mac=00:01:E3:12:34:56

26

Provisioning methods

Auto-provisioning via activation code

With this method the end-user has to enter a unique code - the activation code — on the phone when
setting it up.

For the provisioner, this method is similar to the MAC address one, but it has the advantage that the
phones does not need to be handled before sending it to end-user. It just has to be ensured that a
unique activation code is created by which the end-user can be identified unambiguously. For the
Gigaset VolP phones the activation code can be a numeric string with a maximum of 32 characters.

Depending on the configuration, the phone downloads the configuration parameters only once
("one-shot provisioning". The end-user thus has the freedom to modify all configuration parameters
and/or load other profiles. Alternatively, the phone downloads the profile periodically using the acti-
vation code entered initially and stores the parameter when the profile is changed.

The activation code
The activation code is realised as a key. It consists of two parts that are concatenated as follows:

Activation Code = <Gigaset part><Provisioner part>
Gigaset part = Identifies the provisioner for the related phone.
3 decimal numbers.
Provisioner part = <user id>[#<password>]
Max. 29 decimal numbers.
user id Identifies the end-user unambiguously.

#password Optional password, which is preceded by the # character
as separator. The parameter is used for the HTTP digest
authentication algorithm.

Examples of activation codes:

1238742654986440815 provider = 123, user id = 87426549864, password = 0815.
0159039885893 provider =015, user id = 9039885893, no password

The end-user receives the complete activation code directly from the provisioner, by eMail or during
registration at the provisioner’s web site, for example.

When generating a new activation code, the provisioner must always prepend the Gigaset part
(which is defined by Gigaset Communications when a new provisioner requests this feature). Apart
from respecting the basic syntax described above, the provisioner is free to design the provisioner
part of the code as desired.

27

Provisioning methods

Provisioner Codes merge # | User Name Authent. name Password
87426549864 @ ®1 | 7623841 7623841 fdgrqg
65487654677 2 | 4504312 4504312 sgigzw
93426534641 3|63 \<l4 6586444 hgkzui

Configuration file (encrypted)

[
26549864 7623841 fdgr

Provisioner or

Gigaset
Server
End-user
G

Gigaset
Auto-provisioning via activation code

Principle of operation

EJ The end-user buys a phone, installs it and enters the activation code either via the handset proce-
dure (installation assistant) or via the web user interface.

P The phone extracts the Gigaset part of the activation code and uses it to request the URL of the
provisioning server, normally at the central (Gigaset) server, where the download profiles and
firmware files are located. The provisioning (Gigaset) server sends the provisioner’s URL to the
phone.

[EJ The phone now sends the user id part of the activation code to the provisioner’s URL.

A If the provisioner requests authentication of the user, the request is denied with 401 (Unauthor-
ised). In this case the phone must re-issue the request and provide the authorisation header - the
content of which must be calculated using the password part of the activation code. The password
part is of course never transmitted directly.

[The provisioner uses the userid to feed a CGl application which searches its database for the given
users and then constructs and returns the encrypted user profile.

The received profile also contains the name of the profile which is stored in the phone. From now on,

the phone will periodically check for a changed profile by using the stored profile name ("one-shot

provisioning"). This means that the profile, (normally) located at the Gigaset server, can be the same
one used for manually downloading the profile. It therefore has to be guaranteed that the name of
the received profile is identical with the one on the (Gigaset) server. Depending on the configuration
within the downloaded profile the phone can alternatively download the profile periodically using

the activation code entered initially.

28

Provisioning methods

Message flow

The following diagram shows — in a simplified manner — the message flow between a Gigaset VolP
phone and the involved servers from the auto-provisioning point of view.

Use Case: The VolIP phone is prepared for auto-provisioning with an activation code (locked or non-
locked [One-Shot]) and the customer feeds in the activation code 12387426549864#0815 via the
handset or WEB-UI.

aaaaa

Gigaset Provisioning
o Server Server
l
Connect to LAN Gigaset Server and
http get profile.gigaset.net/device/42/2/master.bin Provisioning Server
ad . can be the same
/ L
Upload content
/ d
< |
S
g 1 Exchange of server index files
o |
! [
é | http get profile.gigaset.net/device/42/2/../../sifs/siu_123.bin
g | >
© e.g. content:
o | <
_rg' I "http://provider_xyz.com/gigaset/cgi/ap?ad=%ACTC"
Q
5 |
Q http get provider_xyz.com/gigaset/cgi/ap?ac=87426549864
= | >
e
a | N .
\ < error 401 authorisation required*)
\ http get provider_xyz.com/gigaset/cgi/ap?ac=87426549864, Authorisation: Digest,
\ username: 87426549864, algorithm=MD5, nonce based on password "0815" o
»
\ < Profile with customer-specific settings
N ~ (AES 128 encrypted with provider-specific
encryption key)

*) Authorisation: optional but recommended

The message flow illustrates steps [EJ to il of the image on
Communication takes place by means of HTTP requests.

Profiles are stored in a binary format on the provisioning server depending on the phone variant. The
Gigaset server uses the phone’s variant ID to upload the matching configuration. For example, http://
profile.gigaset.net/device/42/2/master.bin refers to the configuration files of a Gigaset N510 IP PRO phone
(+).

29

Provisioning methods

HTTP request

When the phone contacts the provisioning server in order to download the auto-provisioning file, it
performs an HTTP: : GET for a URL with the following format:

http://<server domain>/<directory>/<ap>?ac=<activation code>

<server domain> DNS name (or IP address) of the provisioning server.
<directory> Path to the auto-provisioning script within the server domain.
The script is a CGl application, i.e. it runs inside the HTTP server (+).

It constructs a personalised XML configuration file for the requesting phone,
then calls an application which creates the binary configuration file

(gigaset_profile_gen, +),and finally returns the configuration data to
the phone.
<ap> Name of the auto-provisioning script: ap (auto-provision).

<activation code> Activation code of the VoIP phone generating the request.

Example:
http://my.server.domain.com/gigaset/cgi/ap?ac=0159039885893

URI format

The URL, where the ap script is performed, is determined by an additional query to get a so- called
URI format string. The server for this query is the same server which is used for firmware updates (nor-
mally - not necessarily, but recommended - the Gigaset server). The query is done with a 3-digit pro-
visioner code. This code is preprogrammed in the factory or is part of the activation code which was
entered manually and is used by the phone to get the file with the format string. This format string
will be used again by the phone to build the command to get the profile from the provisioner’s server.
The format string contains fixed text (used for the query as it is) and a format specifier (with a leading
%) which will be replaced by the phone. The relevant configuration possibilities of the URI-format
string are the following:

Format specifiers:

$ACTC Provisioner part of the activation code. Example: 87426549864

$DVID Device ID, composed of build variant and provisioning ID. Example: 42/2
$MACC MAC with colons. Example: .00:01:E3:12:34:56.

$MACD MAC without colons. Example: .0001E3123456.

To represent the percent character.

o0 o\
o

Example:

The URI-format string:
http:// my.server.domain.com/gigaset/cgi/ap?ac=%ACTC

and the activation code 12387426549864#0815 leads to a request with the command:
GET http://my.server.domain.com/gigaset/cgi/ap.cgi?ac=87426549864

30

Provisioning methods

Security aspects

& HTTPS (TLS) is supported by most of the Gigaset VolIP phones. Server root certificates are used.
& The profile can be encrypted with AES 128 using a specific encryption key.

& The MAC address is sent during the provisioning process and this MAC address can be used for
comparing the address with a data base containing all allowed MAC addresses. Therefore only
known phones receive provisioning data.

& The activation code string contains an optional password.
& The use of HTTP Digest Authentication is possible.

] It is not possible to use TLS client certificates.

Client authentication via HTTP Digest Authentication

Gigaset VolP phones can use https (HTTP over TLS) but without client certification only. Conse-
quently, there is no information to check the authenticity of the client. Anyone can send a request to
the Gigaset redirection server or a provisioning server with a randomly faked MAC address. If the ran-
dom MAC address is correct, that person would be redirected to a provisioning server and receive an
end-user profile configuration.

In order to avoid such a scenario, an additional HTTP digest authentication as defined in RFC 2617
can be used by the phones. The use of HTTP digest authentication is strongly recommended for all
networks that are easily eavesdropped, because otherwise a hacker could easily access the user
account information by simply recording and replicating the phones GET request to the provisioning
server.

Because the HTTP digest authentication is based on a shared secret (which is contained in the pass-
word component of the activation code), an attacker who wishes to hijack the phone by providing a
fake provisioner’s URL will still not be able to find out what the shared secret is - because it is never
transmitted in clear text.

The HTTP digest authentication algorithm implemented in Gigaset VolP phones only supports the
following context and therefore should be taken into consideration by the provisioner’s HTTP imple-
mentation:

algorithm = "MD5" and qop = "auth™

Furthermore, the uri= part of the authorisation header is built in the format described in RFC 2616
(i.e., without the domain portion of the URI), e.g.:

uri="/phone/cgi/ap?ac=87426549864"

31

Provisioning methods

Updating the configuration data

For transferring changed settings from e.g. a VoIP PBX to a VoIP phone an additional method is nec-
essary for triggering the provisioning procedure, because the real profile download can only be
started from the VolIP phone.

The Gigaset VoIP phones automatically ask for new updates when they are restarted. To initiate a con-
figuration update from the provisioner’s side the SIP check-sync mechanism can be used.

SIP check-sync mechanism

The check-sync mechanism allows the initiation of a profile (configuration file) download from
remote.

A SIP NOTIFY has to be used for sending the check-sync command. As additional information the pro-
tocol includes the switch, if a reboot has to take place (some operating systems need a reboot to
make the new settings valid).

The following pictures show the principle of this mechanism and protocol details:

PBX

Gigaset VolP phone Router/Network Switch
(Provisioning Server)

T

|
SIP NOTIFY with<Event: check-sync> and e.g. <reboot = true>
|
|
Provisioning is started: http get profile.gigaset.net/device/42/2/master.bin ;

B session Initiation Protocol
=l Reguest-Line: NOTIFY sip:l0O02.NS1O0IPEL7Z2.29.1.51:5060 SIP/2.0
Method: MOTIFY

Request-URI: 5p:l002.WS10IPEL72, 29,1, 51: 5060
[resent Packet: False]
=l Message Header
+ via: SIPA2.0/UDP 127.0.0.1:5060; branch=28hG4brE9443a0C; rport
From: “Gigaset” <sip:Gigaset®l27.0.0.1>;tag=as3%b0fcab
To: <sip:1l002. . W510IPEL72. 29,1, 51: 5060=
¥ Contact: <sip:Gigaset®l2?.0.0.1>
Call-1p: ST7feslssvisef2bo0Fbdidadaaflodo®l27.0.0.1
CSag: 102 NOTIFY
user-aAgent: Gigaset PRO
Max-Forwards: 70
Event: check-sync; reboot=true
content-Length: 0

32

The XML provisioning file

The XML provisioning file

Configuration data for Gigaset VolP phones is provided by means of XML files.

Currently, the XML file is used as input for the gigaset_profile_gen application which converts the con-
figuration into a binary format comprehensible by Gigaset VolP phones. In future, the Gigaset VolP
phones will accept XML as input format directly (+).

XML files

XML files can be created based on templates that are delivered by Gigaset and stored within the
gigaset file system. A general template is provided in the subordinate /gigaset/cgi/shop directory
(+).

The following template files are available:

template.xml Template for auto-provisioning using the MAC method.
actc_template.xml Template for auto-provisioning using an activation code.
Device-specific templates are available in the device’s cgi subdirectories (+). The XML file
syntax may be different depending on the device’s functionality and date of manufacture. To get
information on the correct XML syntax for a specific device please refer to the appropriate template
in the device’s subdirectory.

Gigaset supplies a template XML file which has to be adapted by the auto-provisioning script to pro-
vide the real provisioning data.

XSD schema files

To make sure that the XML file contains only configuration parameters the phone understands, it has
to be validated against a fixed schema file (referred to inside the XML file). Schema files are also pro-
vided by Gigaset and available in the general cgi directory as well as the device-specific cgi directories
(+).

The following schema files are available:

provider.xsd XML schema file for validating the template.xml file.
actc_provider.xsd XML schema file for validating the actc_template.xml file.

Configuration parameters
The parameters used for provisioning are described in general on

Each Gigaset IP phone has a lot of further configuration parameters which can be provided by the
XML input file additionally to the provider data.

Details of the parameters mentioned here and a list of all possible configuration parameters are avail-

able at http://wiki.gigaset.com.

The list of modifiable parameters can change if further features are added to the phone
in the future. Therefore, please refer to the template files (template.xml /actc_template.xml)
and the schema files (provider.xsd/actc_provider.xsd) which are supplied.

Attention:

LY

You should never change the provider schema file - any changes you might desire in
the schema file must be provided by Gigaset. The schema file is the only guarantee
that the XML file is compatible with the Gigaset phone you are marketing.

33

http://wiki.gigaset.com

The XML provisioning file

XML template - example

The following is a short extract from the template.xml file. To view the total file or the actc_template.xm!
file you can open it from the gigaset/cgi/shop directory (+).

The template provided by Gigaset for the XML file contains two types of parameters:
+ Alarge set of parameters which have to be adapted for a specific provider.

& Asmaller set of parameters intended to be adapted (by the provisioner’s ap.cgi script) to tailor the
file for an individual end customer. The latter set of parameters has been highlighted in the frag-
ment shown below.

<?xml version="1.0" encoding="1S0O-8859-1"7>

<ProviderFrame xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:noNamespaceSchema
Location="provider.xsd">

<Provider>
<MAC_ADDRESS value="insert MAC_ADDRESS here"/>
<VERSION value="insert VERSION here"/>
<PROFILE_NAME class="string" value="insert PROFILE_NAME here"/>
<S_SIP_LOGIN_ID class="string" value="insert S_SIP_LOGIN_ID here"/>
<S_SIP_PASSWORD class="string" value="insert S_SIP_PASSWORD here"/>
<S_SIP_USER_ID class="string" value="insert S_SIP_USER_ID here"/>
<S_SIP_DOMAIN class="string" value="192.168.2.1"/>
<l-- optional (and obsolete)
<S_SIP_REALM class="string" value=""/>
-—>
<S_SIP_SERVER class="string" value="192.168.2.1"/>
<|_SIP_SERVER_PORT class="integer" value="5060"/>
<S_SIP_REGISTRAR class="string" value="192.168.2.1"/>
<|_SIP_REGISTRAR_PORT class="integer" value="5060"/>
<B_SIP_USE_STUN class="boolean" value="false"/>
<S_STUN_SERVER class="string" value=""/>
<|_STUN_SERVER_PORT class="integer" value="3478"/>
<!-- optional
<|_NAT_REFRESH_TIME class="integer" value="20"/>
-—>
<|_OUTBOUND_PROXY_MODE class="string" value="auto"/>
<S_OUTBOUND_PROXY class="string" value="192.168.2.1"/>
<|_OUTBOUND_PROXY_PORT class="integer" value="5060"/>
<|_RE_REGISTRATION_TIMER class="integer" value="180"/>
<|_RE_STUN_TIMER class="integer" value="240"/>
<!-- optional; loudness values: 0 = normal, 1 = loud, 255 = low
<|_LOUDNESS 1 class="integer" value="0"/>
-—>
<l-- more optional parameters for account 1
<S_SIP_DISPLAYNAME class="string" value="anything"/>
-—>
<S_SIP_PROVIDER_NAME class="string" value="PBX"/>
<l-- more optional parameters for account 1
<|_SIP_ACCOUNT_MT_RCV_1 class="integer" value="63"/>
<|_SIP_ACCOUNT_MT_SND_1 class="integer" value="1"/>
-—>
<B_SIP_ACCOUNT_IS_ACTIVE_1 class="boolean" value="true"/>
<l-- more optional parameters for account 1
<S VOIP_NET_AM_NUMBER _1 class="string" value=""/>
<B_VOIP_NET_AM_ENABLED 1 class="boolean" value="true"/>
-—>

34

The XML provisioning file

<l-- optional; codec list for account 1 with 5 elements, values: 0 = PCMU G.711 p law,
1=PCMA G711 alaw, 2 = G726, 3 =G729,4 = G726 AAL2 ,5= G722

<|_SIP_PREFERRED_VOCODER class="array">

<ARRAYELEMENT class="integer" value="5"/>
<ARRAYELEMENT class="integer" value="1"/>
<ARRAYELEMENT class="integer" value="0"/>
<ARRAYELEMENT class="integer" value="2"/>
<ARRAYELEMENT class="integer" value="3"/>

</I_SIP_PREFERRED_VOCODER>

-—>

<l-- optional: parameters for account 2

-—>>

<l-- optional; codec list for account 2 with 5 elements, values: 0 = PCMU G.711 p law,
1=PCMA G.711 alaw, 2 = G726, 3 = G729, 4 = G726 AAL2 ,5 = G722

e >
<!-- optional: parameters for account 3

-—->
<l--Bit-Masks for |_DTMF_TX_ MODE_BITS: Audio=1, RFC2833=2, SIP-INFO=4-->
<|_DTMF_TX_ MODE_BITS class="integer" value="1"/>
<|_DTMF_TX_ RTP_PAYLOAD_TYPE class="integer" value="101"/>
<B_SHOW_USERID_DURING_WIZARD class="boolean" value="true"/>
<l-- optional parameters:
<S_DATA_SERVER class="string" value="gigaset.siemens.com/gigaset"/>
<S_EMAIL_SERVER class="string" value="192.168.2.55"/>
<S_MESSENGER_SERVER class="string" value="192.168.2.55"/>
<|_MESSENGER_SERVER_PORT class="integer" value="1"/>
<S_TIME_NTP_SERVER class="string" value="192.168.2.55"/>
<B_REDIRECT_EMERGENCY_TO_PSTN class="boolean" value="true"/>
-—->
<l-- optional; allows to add a text to the UA header in SIP messages:
<S_USERAGENT_STRING class="string" value="additional_text"/>
-—->
<l-- optional-->
<B_SIP_SHC ACCOUNT_IS_ACTIVE class="boolean" value="true"/>
<l-- optional online phonebook settings -->
<S8 _TDS_SERVICE_URL class="string" value=""/>
<S_TDS_LOGIN class="string" value=""/>
<S_TDS_LOGIN_PASS class="string" value=""/>
<S_TDS_TXT_MENU class="string" value=""/>
<S_TDS_TXT_HEADER class="string" value=""/>
<S_TDS_TXT_SEARCH_1 class="string" value=""/>
<S_TDS_TXT_SEARCH_2 class="string" value=""/>
<S_TDS_TXT_DEP_MENU class="string" value=""/>
<S_TDS_TXT_DEP_HEADER class="string" value=""/>
<S8 _TDS_TXT_DEP_SEARCH_1 class="string" value=""/>
<S8 _TDS_TXT_DEP_SEARCH_2 class="string" value=""/>
<S_TDS_TXT_PTD_MENU class="string" value=""/>
<S_TDS_TXT_PTD_HEADER class="string" value=""/>
<S8 _TDS_TXT_PTD_SEARCH_1 class="string" value=""/>
<S8 _TDS_TXT_PTD_SEARCH_2 class="string" value="0"/>
<|_TDS_CAPABILITIES class="integer" value="0"/>
<S_TDS _ISO_3166_1 class="string" value=""/>
<B_TDS_TRANSMIT_MAC_ADDRESS class="boolean" value="1"/>
<l-- optional online phonebook settings end-->
</Provider>
</ProviderFrame>

35

The XML provisioning file

Example: XML file fragment for sipgate
In the case of the MAC method:

<?xml version="1.0" encoding="1S0-8859-1"7?>

<ProviderFrame xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:noNamespaceSchema
Location="mac_provider.xsd">

<Provider>
<MAC_ADDRESS value="filled out by the ap script"/>
<VERSION value="insert VERSION here"/>
<PROFILE_NAME class="string" value="insert PROFILE_NAME here"/>
<S_SIP_LOGIN_ID class="string" value="insert S_SIP_LOGIN_ID here"/>
<S_SIP_PASSWORD class="string" value="insert S_SIP_PASSWORD here"/>
<S_SIP_USER_ID class="string" value="insert S_SIP_USER_ID here"/>
<S_SIP_PROVIDER_NAME class="string" value="Sipgate"/>
<S_SIP_DOMAIN class="string" value=""/>
<S_SIP_REALM class="string" value="sipgate.de"/>
<S_SIP_SERVER class="string" value="sipgate.de"/>
<|_SIP_SERVER_PORT class="integer" value="5060"/>
<S_SIP_REGISTRAR class="string" value="sipgate.de"/>
<|_SIP_REGISTRAR_PORT class="integer" value="5060"/>

</Provider>
</ProviderFrame>

In the case of the activation code method:

<?xml version="1.0" encoding="ISO-8859-1"?>

<ProviderFrame xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:noNamespaceSchema
Location="actc_provider.xsd">

<Provider>
<ACTIVATION_CODE value="filled out by the ap script"/>
<VERSION value="insert VERSION here"/>
<PROFILE_NAME class="string" value="insert PROFILE_NAME here"/>
<S_SIP_LOGIN_ID class="string" value="insert S_SIP_LOGIN_ID here"/>
<S_SIP_PASSWORD class="string" value="insert S_SIP_PASSWORD here"/>
<S_SIP_USER_ID class="string" value="insert S_SIP_USER_ID here"/>
<S_SIP_PROVIDER_NAME class="string" value="Sipgate"/>
<S_SIP_DOMAIN class="string" value=""/>
<S_SIP_REALM class="string" value="sipgate.de"/>
<S_SIP_SERVER class="string" value="sipgate.de"/>
<|_SIP_SERVER_PORT class="integer" value="5060"/>
<S_SIP_REGISTRAR class="string" value="sipgate.de"/>
<|_SIP_REGISTRAR_PORT class="integer" value="5060"/>

</Provider>
</ProviderFrame>

36

The XML provisioning file

How to manage the VERSION parameter

The VERSION parameter in the XML file is somewhat special because it is not really a configuration
item, butinstead is used by the phone to detect whether there have been any changes in the config-
uration since the last time it was changed.

The parameter is a time string with the following mandatory format:

ddmmyyhhmm
where dd, mm, yy, hh and mm represent the decimal numeric values for day, month, year, hours and
minutes respectively. Because the phone converts this string into an equivalent integer value, it is
important to choose valid date & time values.

In the phone, the change detection algorithm works as follows:

& Whenever the phone has requested and processed an auto-provisioning file, it converts the string
contained in the VERSION parameter into an integer, which is saved in the non-volatile RAM.

+ Infuture, the phone compares this saved integer with the value of the integer calculated from the
VERSION parameter contained in any newly requested auto-provisioning file.

¢ Aslong as the two integers are equal, the phone assumes that the auto-provisioning file is identi-
cal with the old one, and will ignore it.

+ If, however, the integers are different, the phone assumes that a new auto-provisioning file has
beenissued and updates its configuration accordingly, replacing its saved copy of the integer with
the one calculated from the new file.

For the auto-provisioning system, this means that whenever it wishes the phone to update its con-
figuration, it must generate a new value of the VERSION parameter.

The design assumes that the auto-provisioning system will store this version string in the database
entry belonging to a given end-customer, thus indicating the last time the configuration for that par-
ticular end-customer was changed.

Changing the VERSION string too often (e.g. on a daily basis or even more often) is not to
be recommended, as it will force the phone to update its non-volatile memory unneces-
sarily. As this memory is implemented using FLASH or EEPROM technology, which has a
limited number of write cycles, the phone’s useful lifetime will suffer!

LY

37

Setting up an own provisioning server

Setting up an own provisioning server

The general procedure for seting up auto-provisioning of Gigaset IP phones is as follows:

*

L 4

Installing a Linux server

Currently, systems with i386 architecture (and newer, compatible ones) are supported. The instal-
lation file is distributed as a Linux RPM file, i.e. the Linux system used, must support this packaging
format.

Preparing the Linux server
- Installing an Apache HTTP server

The Apache HTTP server is an open source web server for UNIX and Windows systems. It is used
to handle the HTTP requests of the Gigaset IP phones.

- Adapting the web server configuration file for connecting the Gigaset auto-provisioning script
To enable the auto-provisioning script (+) to be executed successfully the web server

configuration file has to be adapted as follows: Add the gigaset/cgi directory to the Apache
directories.

- Installing PHP script language
PHP is a general scripting language designed for web development to produce dynamic web
pages. The code is interpreted by a web server with a PHP processor module which generates

the resulting web page. It also has evolved to include a command-line interface capability and
can be used in standalone graphical applications.

- Setting up a MySQL server (optional)
MySQL is the recommended instrument for providing the auto-provisioning script with the
user-related data.

Installing the auto-provisioning application

- Preparing the file system

- Installing the application

Creating the auto-provisioning script or adapting the sample script (+)

Installing the auto-provisioning application

Preparing the file system

Before installing the auto-provisioning application the file system has to be prepared. i.e. you have to
create the necessary directories and copy the files into the file system structure.

Creating directories

»

Create a new directory gigaset/cgi/shop within the web server document path, e.g.
/var/www/html:

cd /var/www/html/ Change to the web server document directory
mkdir gigaset Create a new directory gigaset

cd gigaset Change to the gigaset directory

mkdir cgi Create a new directory cgi

cd cgi Change to the cgi directory

mkdir shop Create a new directory shop

cd / Return to the root directory

38

Setting up an own provisioning server

Copying the files to the provisioning server
» Copy the following files from the CD into the appropriate directories:

File Copy into the directory:

ap + var/www/html/gigaset/cgi

key + var/www/html/gigaset/cgi/shop
provider.xsd + var/www/html/gigaset/cgi/shop
template.xml + var/www/html/gigaset/cgi/shop

gigaset profil gen-<version>.i386.rpm + /usr/bin

Please note, that the web server path may be different in other Linux and Apache instal-
lations.

L 1Y

Required libraries

Besides the usual libc libraries required by any standard Linux application, gigaset_profile_gen needs
the libxmi2 library.

You can download the latest version of libxm/2 from

http://xmlsoft.org

The RPM installation will inform you if the required libraries are not installed on your system.

Installing the gigaset_profile_gen application

To install the application perform the following steps:
» Change to the /usr/bin directory.
cd /usr/bin
» Install the software.
rpm -Uhv gigaset profile gen-<version>.1386.rpm
To enable the Perl script to start the generator, you need to create a link to the application in the shop
directory.
» Change to the shop directory.
cd /var/www/html/gigaset/cgi/shop

» Create the link

In -s /usr/bin/gigaset profile gen

39

http://xmlsoft.org

Setting up an own provisioning server

Setting the access rights for the auto-provisioning files and script

When the package is installed, the following files are available in the /gigaset directory located in the
HTTP server document directory.

File Description
cgi/ap Auto-provisioning script.
cgi/shop/template.xml Template for auto-provisioning using the MAC method

containing the configuration data for the phone.

cgi/shop/actc_template.xml Template for auto-provisioning using an activation code
containing the configuration data for the phone.

cgi/shop/gigaset profile gen | Auto-provisioning tool.

cgi/shop/key Contains the secret key used to encrypt the configuration
file to be sent to the phone.

cgi/shop/provider.xsd XML schema file required by the gigaset profile gen
application in order to validate the template. xm1 file.

cgi/shop/actc_provider.xsd XML schema file required by the gigaset profile gen
application in order to validate the actc_template.xml
files.

To enable the generator to run successfully you need to set the access rights for the files in the cgiand
shop directories correctly.

Access rights are set using the chmod 755 command.

This sets the access rights as follows: Read, write and execute rights for the owner (root),
read and execute for all other user users.

L 1Y

» Change the directory.
cd <HTTP server directory>/gigaset/cgi

» Change the access rights for the auto-provisioning script.
chmod 755 ap

» Change the directory.
cd <HTTP server directory>/gigaset/cgi/shop

» Change the access rights for the key, template and provider files.

chmod 755 key
chmod 755 template.xml
chmod 755 provider.xsd

40

Setting up an own provisioning server

Auto-provisioning example script
The auto-provisioning script (ap) is responsible for the following tasks:

K} Looking for the given MAC address or activation code and finding the corresponding user and
profile data.

1 Editing a copy of the template XML file with the given user data.

EJ Running the gigaset_profile_gen program which generates the desired configuration file
(+).

3 Sending the configuration file to the requesting phone.

Gigaset provides an example script written in Perl because it has powerful text manipulation instruc-
tions and is the usual choice for writing CGl scripts. This script can be found in the /gigaset/cgi direc-
tory.

Our simple script does all of the above. However, our task 1 is very primitive, because it maps only a
few MAC addresses to fixed users. In real life, this task will probably be implemented by a database
application.

Here is the sample script. It is stored in the /gigaset/cgi directory:
#!/usr/bin/perl

#******‘k************‘k****‘k**
#** Copyright (c) 2008

#** Gigaset Communications GmbH

#** Author(s): LC, HJL / GC PD D SD RP

This is a DEMO CGI script that shows how to interface
the Gigaset application 'gigaset profile gen' inside
a CGI application written in Perl.

** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:

** 1. Redistributions of source code must retain the above copyright

xK notice, this list of conditions and the following disclaimer.

** 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
kel documentation and/or other materials provided with the distribution.

** THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
** DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#************k*****k*****k**k*****‘k****‘k*‘k**
use CGI
$Sq = new CGI();
use File::Temp qw/ tempfile /;
use File::stat;

H o H H S S S S S S S R S
*
*

0. Change to 'shop' directory where actual processing takes place:
chdir './shop' or die "Can't cd to shop: $'\n";

11

Setting up an own provisioning server

1. Get the requesting device's MAC address or activation code

SMacAddress = $g->param(mac) ;
SActivationCode = $g->param(ac);

if (SMacAddress eq '' and S$ActivationCode eq '')
{

no parameter, assume MAC-method

SMacAddress = 'FF:FF:FF:FF:FF:FF';# for testing
}

2. Associate a user profile depending on the provisioning method

if (SMacAddress ne '')
{
2a In case of MAC Autoproviosioning
print ("MAC method!!'\n");
simple check for a valid MAC-address (with or without colons)
if (length ($MacAddress) != 17)
{
if (length ($MacAddress) != 12)
{
die "invalid MAC-format";
}
convert a MAC-address without colons (e.g. 123456789012)
to a MAC-address with colons (e.g. 12:34:56:78:90:12)
SMacAddress=~ s/..\B/$&:/gi
}
Associate requestor's MAC address with a user profile:
Create a temporary xml file from the template:
($InFileH, $TheXmlInputFile) = tempfile ('TmpXXXXXX', '.xml');
close ($InFileH) ;
if (&Customize For MAC Method('template.xml', S$TheXmlInputFile, S$MacAddress) != 0)
{
die "Customize MAC subroutine failed";
}
}
elsif (SActivationCode ne '')
{
2b In case of Provisioning using Activation Code
print ("Activation Code method!!\n");

Associlate requestor's Activation Code with a user profile:

Create a temporary xml file from the template:

($InFileH, $TheXmlInputFile) = tempfile ('TmpXXXXXX', '.xml');

close ($InFileH) ;

if (&Customize For ActivationCode Method('actc template.xml', S$TheXmlInputFile,
$ActivationCode) != 0)

{

die "Customize Activation Code subroutine failed";

}

}

3.Convert the XML user profile created in 2) into an encrypted
Dbinary profile:

Create a temporary output file in the current directory

($OutputFileH, $TheOutputFileName) = tempfile ('TmpXXXXXX', '.bin');
close ($OutputFileH) ;

42

Setting up an own provisioning server

Important: call generator with the -s argument, so it won't output
anything on stdout!
Moreover, if you need to generate a non encrypted autoprovisioning file,
enter the option '-noencrypt', as shown below:
SExitStatus = system ("./gigaset profile gen $TheXmlInputFile S$TheOutputFileName
—-s -noencrypt");
SExitStatus = system ("./gigaset profile gen $TheXmlInputFile S$TheOutputFileName -s");
print S$ExitStatus
unlink ($TheXmlInputFile);
if ($ExitStatus != 0)
{
die "Could not generate the binary profile";
unlink ($TheOutputFileName) ;
}

4. Send the config file to the requesting device:

open (OUTFILE, $TheOutputFileName) or die "The bin file to output could not be found";
print "Content-type: application binary\n\n";

while (1)
{
SByteCnt = read (OUTFILE, $Bytes, 100);
print $Bytes;
if ($ByteCnt != 100)
{
last;
}
}

close OUTFILE;
unlink ($TheOutputFileName) ;

R R R R
Subroutine to customize the XML template for MAC-Autoprovisioning method
5

sub Customize For MAC Method
{
my ($TemplateFileName, $OutputFileName, $MacAddr) = @ ;

This subroutine is a *very* primitive example of how to customize
the xml template file for a specific end customer.

This examples assumes that there are only 4 end customers to
service :-))

In the real world, this subroutine would interface to a huge
database of users who are identified by their MAC address!

= = = H S

R R R R R R R
Customer "Database" for MAC method ##############HHHHHHHHHHHHHHHHHIRHHHRILSS
A R R R R

Customer 1 Customer 2 Customer 3
my (@UserVersion) = ('3011061455', '3011061455" '3011061455")
my (@UserMacAddr) = ('00:01:E3:75:F1:72"', '00:01:E3:67:60:77"', '"00:0A:5E:55:02:8F") ;
my (@UserLoginId) = ('1234567"', '1234567"', '1234568")
my (@UserPassword) = ('abcdef', 'aal23456"', 'bbl123456")
my (QUserId) = ('1234567"', '1234567", '1234568")
my (@UserProfName) = ('d default de.bin', 'd default de.bin', 'd default de.bin');

R R R R R
A R R

43

Setting up an own provisioning server

find user associated with given MAC address:
my $UserIndex = 0;
while ($UserIndex <= S$#UserMacAddr)
{

if (@UserMacAddr[$UserIndex] eq $MacAddr)

{

last;

}

SUserIndex++
}
if (SUserIndex > S$#UserMacAddr)
{

return -1; # Failure: no match for MAC addr found
}

load the whole template:

open (INFILE, S$TemplateFileName) or die "Could not open $TemplateFileName";
my ($Sst) = stat($TemplateFileName) or die "No file $!";

read (INFILE, my S$Block, $st->size);

close (INFILE) ;

substitute the place holders in the template with the

actual values assigned to the end customer:

$Block =~ s/insert MAC ADDRESS here/@UserMacAddr[S$UserIndex]/g;
$Block =~ s/insert VERSION here/@UserVersion[S$UserIndex]/g;

$Block =~ s/insert PROFILE NAME here/QUserProfName [$UserIndex]/g;
$Block =~ s/insert S SIP_LOGIN ID here/@UserLoginId[$UserIndex]/g;
$Block =~ s/insert S _SIP_PASSWORD here/@UserPassword[$UserIndex]/g;
SBlock =~ s/insert S SIP USER ID here/QUserId[$UserIndex]/g;

store the customized xml file:

open (OUTFILE, ">$OutputFileName") or die "Could not open $OutputFileName";
print OUTFILE $Block;

close (OUTFILE) ;

return 0; # Success

}

ER S
Subroutine to customize the XML template for Activation Code Provisioning ###i#
method Sidid
L

sub Customize For ActivationCode Method

{
my ($TemplateFileName, S$OutputFileName, $SActCode) = @ ;

This subroutine is a *very* primitive example of how to customize

the xml template file for a specific end customer.

This examples assumes that there are only 4 end customers to

service :-))

In the real world, this subroutine would interface to a huge

database of users who are identified by their Activation Code!
R
#H#### Customer "Database" for Activation code method #######H##EEHFFFFHHEFHFFSE
R o

H= = = =

Customer 1 Customer 2 Customer 3
my (@UserActCode) = ('000133676069', '000113676077", '000754550284")
my (QUserLoginId) = ('6260854"', '1234567", '1234568")
my (QUserPassword)= ('ddl234’', 'aal2345¢6"', 'b123456")
my (QUserId) = ('6260854", '1234567", '1234568")
my (QUserVersion) = ('3011061455', '3011061455", '3011061455")
my (QUserProfName)= ('d default de.bin', 'd default de.bin', 'd default de.bin');

R i i
R R R R R R R

44

Setting up an own provisioning server

}

find user associated with given Activation Code:
my $UserIndex = 0;
while ($UserIndex <= S$#UserActCode)
{

if (@UserActCode[S$UserIndex] eq S$ActCode)

{

last;

}

SUserIndex++
}
if (SUserIndex > S$#UserActCode)
{

return -1; # Failure: no match for Activation Code found
}

load the whole template:

open (INFILE, S$TemplateFileName) or die "Could not open $TemplateFileName";
my ($Sst) = stat($TemplateFileName) or die "No file $!";

read (INFILE, my S$Block, $st->size);

close (INFILE) ;

substitute the place holders in the template with the

actual values assigned to the end customer:

$Block =~ s/insert ACTIVATION CODE here/@UserActCode[$UserIndex]/g;
$Block =~ s/insert VERSION here/Q@UserVersion[$UserIndex]/g;

$Block =~ s/insert PROFILE NAME here/QUserProfName [$UserIndex]/g;
$Block =~ s/insert S SIP LOGIN ID here/QUserLoginId[$UserIndex]/g;
$Block =~ s/insert S SIP PASSWORD here/@UserPassword[$UserIndex]/g;
$Block =~ s/insert S SIP USER ID here/@UserId[$UserIndex]/g;

store the customized xml file:

open (OUTFILE, ">$OutputFileName") or die "Could not open $OutputFileName";
print OUTFILE $Block;

close (OUTFILE) ;

return 0;# Success

Adapting the ap script for MySQL database input (optional)

Usually, the user data is imported from a database. The following is an example for implementing
MySQL access within the ap script.

When the ap script should access a MySQL database for importing the user-related data adapt the
script analogous to the following:

4

45

At the beginning of the script change the following section:

use CGI

Sq = new CGI();

use File::Temp qw/ tempfile /;
use File::stat;

Add the following lines:

use Mysql for database connection

use Mysql;

Encode will be used for encoding and decoding results from database
use Encode;

Add another sub routine to the script. Ensure that database, table and field names match the set-
tings defined for the database.

Setting up an own provisioning server

R R R S
Subroutine to customize the XML template for MAC-Autoprovisioning method —
#H# with Mysgl Connection #H#
R S R R

sub Customize For MAC Method MYSQL
{

my ($TemplateFileName, S$OutputFileName, $MacAddr) = @ ;

FHEH A
MySQL Connection
FHE A

Mysqgl Configuration

Shost="1localhost";
Sdatabase="GigasetAutoProvisioning";

Stablename ="UserConnectionValues";

Suser="root";

Spw="gigaset";

MySQL Connet

Sconnect = Mysqgl->connect ($host, Sdatabase, Suser, $Spw) ;
#Select DB

Sconnect ->selectdb (Sdatabase) ;

#Define a Mysgl Query

Smyquery ="SELECT *FROM $tablename WHERE MAC = \'SMacAddress\' LIMIT 0,30";
#Execute the Query Function

Sexecute =S$connect->query (Smyquery) ;

SMAC="";
SVersion ="";
$Profil ="";
SLOGINIG ="";
SUSERID ="";
Spw="";

Turn results from DB into Variables

while (QRresults = Sexecute->fetchrow())

{

SMAC = Sresults[0];

convert UTF8 (DB) to Iso—-8859-1(Latin) for the template (Endconfing Iso-8859-1
Soctets = encode ("utf8", S$SMac);
SMac = decode ("iso-8859-1", Soctets) ;
SVersion = Sresults[l];
Soctets = encode ("utf8", $Version);
SVersion = decode ("iso-8859-1", Soctets) ;
SProfil =S$Sresults[2];
Soctets = encode ("utf8", SProfil);
SProfil = decode ("i1s0-8859-1", Soctets) ;
SLOGINID =Sresults[3];
Soctets = encode ("utf8", S$SLOGINID) ;
SLOGINID = decode ("iso-8859-1", Soctets) ;
SUSERID =Sresults[4];
Soctets = encode ("utf8", SUSERID);
SUSERID = decode ("1is0-8859-1", Soctets) ;
SPW= Sresults[5];
Soctets = encode ("utf8", S$PW);
SPW = decode ("is0-8859-1", Soctets) ;

}

load the whole template:

open (INFILE, S$TemplateFileName) or die "Could not open $TemplateFileName";
my ($Sst) = stat($TemplateFileName) or die "No file $!";

read (INFILE, my S$Block, S$st->size);

close (INFILE) ;

substitute the place holders in the template with the
actual values assigned to the end customer:

46

Setting up an own provisioning server

$Block =~ s/insert MAC ADDRESS here/$MAC/g;

$Block =~ s/insert VERSION here/$Version/g;

$Block =~ s/insert PROFILE NAME here/S$Profil/g;
$Block =~ s/insert S SIP LOGIN ID here/S$SLOGINID/g;
$Block =~ s/insert S_SIP PASSWORD here/$PW/g;
$Block =~ s/insert S SIP USER ID here/SUSERID/g;

store the customized xml file:

open (OUTFILE, ">$OutputFileName") or die "Could not open $OutputFileName";
print OUTFILE $Block;

close (OUTFILE) ;

return 0;

Success

Database entries have to be converted from Unicode to UTF-8 to be processed by the
auto-provisioning tool successfully.

L 1Y

Testing the installation

When the installation and adjustment are finished, you should test to see if the auto-provisioning
process works properly. You can use a standard web browser to test the correct setup of the auto-pro-
visioning system.

4

To check if your installation has been successful enter the following URL in your browser:
http://<provisioning server>/gigaset/cgi/ap?mac=<MAC address>
<provisioning server> Domain name or IP address of the provisioning server

<MAC address> MAC address of an IP phone known by the ap script.

Example:
Your host has the domain cfg.provisioner.com.

»

.

Enter the following URL:
http://cfg.provisioner.com/gigaset/cgi/ap?mac=00:11:22:33:44:55

If everything is set up properly, the browser offers you a binary file. The file is encrypted, so it
should be quite unintelligible when downloaded and then opened with a hex editor.

If the web browser times out, or returns “404", you'll have to verify your setup; make sure you have
created the correct directory.

If the web browser returns “500" the script has failed, e.g. because an unknown MAC address was
entered.

You can then test your auto-provisioning system with the Gigaset phone.

»

47

Power-up the phone and wait a few minutes for the phone to generate the auto-configuration
request.

We suggest you use a trace program like Ethereal®, Wireshark etc. to examine the phone requests
and the response from your HTTP server.

Open the phone’s web page to check whether the configuration parameters you programmed
have been successfully stored in the phones configuration memory.

Setting up an own provisioning server

The gigaset_profile_gen application

gigaset_profile_gen is a console application intended to be called from a CGl script. Chapter
(+) describes how this script has to be designed and provides
an ap example script.

Synopsis
gigaset profile gen XML INPUT FILE OUTPUT FILE [-s] [-noencrypt]

Description

Generates the encrypted configuration file from the given XML_INPUT_FILEand places it in
OUTPUT_FILE.

Mandatory arguments
XML _INPUT_FILE File containing the configuration data for the phone to be provisioned

(+).

OUTPUT FILE Binary, encrypted version of the configuration, ready to be sent to the phone.

Optional arguments

-s Silent operation: suppresses any output by the program to STDOUT; when called
from a CGl application, this argument must be used, because the CGl standard
uses STDOUT to gather the response that HTTP will send to the client. Without
this parameter, the HTTP response would contain unwanted text, such as the
sign-on message generated by the program!

-noencrypt Don't encrypt the output file
This argument must only be used if the phone does not require a secret key —
otherwise, it will not understand the configuration file!

Remarks
+ Inorder to encrypt the configuration file, gigaset_profile_gen usually needs a secret key, which is
contained in a file named key. This file must be located in the same directory as the application.

The secret key must coincide with the one used in the phone. Therefore, the key file is customised
by Gigaset for the provisioner.

In certain closed network scenarios, the provisioner might desire to work with an unencrypted
configuration file. In this case, the phone has to be customised by Gigaset accordingly ("no secret
key"), and the argument -noencrypt shown above must be given when invoking the
gigaset_profile_gen application for building the file.

Note that for security reasons Gigaset recommends using encrypted configuration files only.

& To make sure that the XML_INPUT_FILE contains only configuration parameters the phone under-
stands, the gigaset_profile_gen validates it against a fixed schema file (referred to inside the XML
file). This schema file is provided by the Gigaset. It must be located in the same directory as the
XML_INPUT_FILE.

If the validation fails, the application returns an error.

Return values

gigaset_profile_gen returns 0 on success. All other values indicate an error. Error messages are sent to
STDERR. In the case of errors, an empty OUTPUT_FILE is generated.

48

Setting up an own provisioning server

File system structure

Usually, the configuration data for the VoIP phones is provided by Gigaset, taking a determined data
structure within the HTTP server file system into consideration.

If the primary URL is changed (e.g. via the DHCP option 114 or via SIP NOTIFY, »), the data
structure has to be stored at the HTTP server according to the new URL. When using an own provi-
sioning server the data has to be provided by the provisioner itself.

The data structure is as follows:

Within the HTTP server file system the gigaset directory is created containing a subdirectory for each
device type. The numbers used as directory names correspond to the device or the device variant of
the Gigaset IP phones.
gigaset/41 41 = Gigaset DX800A

42 42 = Gigaset C610 IP/N300 (1), Gigaset N510 IP PRO (2)

60 60 = Gigaset DE90O0 IP PRO

61 61 = Gigaset DE700 IP PRO

62 62 = Gigaset DE410 IP PRO

63 63 = Gigaset DE310 IP PRO

70 70 = Gigaset N720 DM PRO

71 71 = Gigaset N720 IP PRO

For each device variant a master file (master.bin) is stored. In addition all files that are necessary for
the device, e.g. firmware, language files for the Web GUI, help files, texts for the handset Ul, auto-pro-
visioning links, are available.

Gigaset provides the provisioner, e.g. the PBX manufacturer, with the required data structure. The
auto-provisioning example application (ap script, gigaset_profile_gen, XML templates, etc.) is copied
to the subdirectories of the device variants.

Provisioning is automatically processed at the location where the example application is stored. This
is achieved with the use of wildcards for the server URL, MAC address, etc. in the auto-provisioning
URL.

Example for Gigaset N510 IP PRO:

gigaset/42/2/ cgi/shop/gigaset profile gen
cgi/shop/key
cgi/shop/merkur mac template.xml
cgi/shop/merkur mac template.xsd
cgi/ap
c 0811101406 _eng.bin
c 0811101406 fre.bin
c 0811101406 _ger.bin

d default de.bin

1 0811101406.bin
master.bin

pde 0811101406 _eng.bin
pde 0811101406 fre.bin
pde 0811101406 ger.bin

& The variant/provisioning ID is 42/2
& The URL assigned using SIP NOTIFY is http://192.168.1.100/provsioning/gigaset
The data structure has to be stored within this directory.

¢ The total path to the file master.bin is:
http://192.168.1.100/provsioning/gigaset/42/2/master.bin

49

Setting up an own provisioning server

& This is used to load the auto-provisioning URL, e.g.
http://%DURL/%DVID/cgi/ap?mac=%MACD
& The place holders are replaced in sequence:
$DURL="http://192.168.1.100/provsioning/gigaset"
SDVID="42/2"
SMACD=12:34:56:78:90:12
¢ The VolIP phone then launches the complete auto-provisioning request:
http://192.168.1.100/provsioning/gigaset /42/2/cgi/ap?mac=12:34:56:78:90:12
Hence, the auto-provisioning request is processed at the correct location by means of wildcards with-
out previously knowing the URLs of the auto-provisioning servers.

Of course, instead of using wildcards, you can also apply a fixed URL for the auto-provisioning server.
But for the first set-up the procedure described above is helpful.

50

Index

Index

A viaXML-RPCcall..............iiit. 16

Access Hights.oooiii i 40 Device _

Activation code c;le(eglsterlng a |ISt‘ qf RETTRRRY RIPRES 21
authentication 27 I!st!ng allat a specific provider registered 18
auto-provisioning method................ 27 listing all registered SAREERERTTERE 17
format..........ocoooiiiii 27 listing all registered at a specific
generatingoooeiiiiiiiiii. 27 ~provider.................... e 19
Gigasetpart.........oooveiiiiiiiiiiinn. 27 listing ‘f“” registered at a specific provider 20
Provisioner parto.eeeeeen.... 27 DHCPoption 114 6,23
security hints............c.coeiiiinin... 31 dhep_url..oo 23

ap script see auto-provisioning script Directory

Apache HTTP server Cgl ... 38
configurationfile.......................... 38 gIgaset........oooviiii 38
directories.c.oviiiiiiii 38 HTTP server..........oooovi 40
installingo.ooviveiiii 38 Shop ..o 38

autoprov.checkDevice........................ 19 E

Utoprov.deresterbevice. ...,/ 1 End-user roleinprovisioning process 4

autoprov.deregisterDevicelist 21 F

autoprov.listDevices..................ooeet 18 File system

autoprov.hstpewces, f‘:\II 17 preparing for installation. 38

autoprov.registerDevice. 15 File system structure.......................... 49

Auto-provisioning devicevariantscoceeunn.n. 49
general procedure 38 Files, provisioningc....o..o..... 33
template.......... 40 for XML configurationfile 33
URL .o 49
via activationcode........................ 27 G

Auto-provisioning scriptooolll 41 Gigaset
example ... 41 redirection servercouuiuiiii. 5
MySQL connection................coun.e. 45 updateserveroooiiiiiiii. 5

Auto-provisioning via activation code gigaset directoryccoovuiiniiiinns, 38
messageflow.........................l L. 29 Gigaset Wiki..........coeviiiiiiiiiil 33

Auto-provisioning via MAC address gigaset_profile_gen
messageflow.......................l L. 29 ArQUMENTS. ...\ttt 48

Auto-provisioning, definition 3 installing..........ooovveiiiii 39

Auto-provisoning script................... 26, 30 link to shop directory 39

C required libraries 39

returnvalues ..., 48

check-synC......ccoovviiiiiii 32 USAGE + - oo eve e, 48

chmod ... 40 Gigaset, role in provisioning process........... 4

Command /9igaset/Ci.o 38
check-sync ... 32 /Gigaset/cGi/sShOP. . .vv .o eeeee e 38
chmod. ... 40

Configuration file H
Apache ... 38 HTTP Digest Authentication.................. 31
encryptionkey ... 40 HTTP requestscooeeveneeeannnn... 26, 30

Configurationupdate 32

|

D Installationtest.................ooonan.. 47

Database Installing
character format UTF-8 47 Apache HTTP server....................... 38

Deregistering gigaset_profile_gen....................... 39
alistofdevices.........................L 21 PHP e 38

Deregistering a device IP phone set-up
viaweb Ul 1 manually ... 9

K
KeY .o 40
L
libclibraryooovviii 39
Libraries.ovuvene 39
libxml2 library ... 39
List devices

via web userinterface..................... 11
M
MAC address.covvviviiii i, 23
MACID. .. 23
MAC-based auto-provisioning 23
Mainmenu ... 10
MAINMENU ..ot 10
Manual IP phone set-up...............c....ee. 9
master.oin ... 49

Message flow
auto-provisioning via activation code.... 29

auto-provisioning via MAC address 29
MySQL

inapscript ... 45
P
Perlscript......ccooviiiii 41
Phone

variantID............o 25,29
PHP

install ... 38
Profile......coooiiiiii 3
Provider, role in provisioning process......... 4
Provisioing

MAC-based..........cooviiiiiiii i, 23
Provisioner, role in provisiong process........ 4
Provisioning

getURL.....cooiiii i 26,30
Provisioningdata.................coooiil 8
Provisioning files, XML 33
Provisioningmethods......................... 6
Provisioningserver.................ocoiiil 5

customised. ... 5
Provisioning, definition........................ 3
R
Redirection

web userinterface 10
Redirection data

deregistering via web user interface 1
Redirection data record

registering via web user interface 10
Redirectionserver.................ooovveiiin 5
Redirecton service...............coooiiiiiiin 6
Registering

via web userinterface..................... 10
Roles, in provisioning process................. 4

52

S
Schema file for XML template................ 33
Secretkey.....ovviii 48
Security
using activation code method............ 31
Security aspectsoiiiiiiiiii i 31
Server
Provisioning..........cooviiiviiniininnn... 5
redirection.............ccooiiiiiiiiiii. .. 5
update. ..o 5
SIP check-sync mechanism................... 32
SIP multicast mechanism................... 6,22
T
Template.......coooiiiiiiiiii 33
Template, auto-provisioning 40
U
Unicode.......oooiiiiiiii i 47
Update configuration 32
Updateserver...........oovvviiiiiiiinnnennnn.. 5
URIformatstringc.ooenet 26, 30
User account
for provisionerweb Ul 10
UTF-8. e 47
Vv
VERSION parameter, in XMLfile 37
w
Web userinterface......................ol 10
forredirectiondata........................ 10
Wiki o 33
X
XMLAile ..o 33
uploading directly......................... 12
uploadingvieweb Ul 12
XMLFileUpload..............cooiiiiii 12
XML schema file for template 40
XMLtemplate......cooovviiiiiiiiii i 33
XML-provisioning...........cooeeviiiininnenn... 3
plain ... 3
withbinary ... 3
XML-RPC .. 13
XML-RPC command
autoprov.checkDevice 19
autoprov.checkDevicelist................. 20
autoprov.deregisterDevice................ 16
autoprov.deregisterDevicelist............ 21
autoprov.listDevices....................... 18
autoprov.listDevices,all................... 17
autoprov.registerDevice 15
XML-RPCcommandsooeeee 15
XSD schemafile.................oll 33

Gigaset Communications GmbH
Frankenstral3e 2a, D-46395 Bocholt

© Gigaset Communications GmbH 2012
All rights reserved. Subject to availability.
Rights of modification reserved.

www.gigaset.com

A31008-M2212-R910-2-7643

	Content
	Introduction
	Roles in the provisioning process
	Server in the provisioning process
	Gigaset server
	Provisioning server

	Provisioning methods
	Provisioning data

	Provisioning methods
	Manual Gigaset VoIP phone set-up – standard procedure
	Methods for providing the provisioning server URL
	Setting up redirection information using the web user interface
	Setting up redirection information using the XML-RPC interface
	Providing the provisioning server URL via the SIP multicast mechanism
	DHCP option (dhcp_url)

	MAC based provisioning
	Message flow
	HTTP request

	Auto-provisioning via activation code
	Message flow
	HTTP request

	Security aspects
	Updating the configuration data

	The XML provisioning file
	Setting up an own provisioning server
	Installing the auto-provisioning application
	Preparing the file system
	Required libraries
	Installing the gigaset_profile_gen application
	Setting the access rights for the auto-provisioning files and script

	Auto-provisioning example script
	Testing the installation
	The gigaset_profile_gen application
	File system structure

	Index

